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Abstract

TVM, an end-to-end compiler stack optimized
to solve fundamental challenges for deploying
deep learning models, bridges the gap between
frameworks (front-end) and their need to deploy
the models on a diverse set of hardware devices
(back-end) shying away from the current ad-hoc
fashion utilized by the current Deep Learning
(DL) frameworks. It does so by employing both
graph-level optimizations and operator-level opti-
mizations which enables it to provide the required
portability. It also uses a learning-based cost func-
tion to explore various code optimizations.

This document simply reviews the methodology
adopted by the authors of TVM 1 and is an at-
tempt to inculcate interested individuals about the
in-depth internals of TVM. I believe for anyone
practising deep learning its important for them to
understand what’s happening behind the curtains
when they construct a neural-network in a high-
level representation and train it on an edge device;
this work is a step towards the same direction.

Keywords – Deep Learning, Compiler Design,
Optimization

1. The Need
Given the enormous spectrum of hardware systems (CPUs,
GPUs, FPGAs and ASICs) in the stage of deployment and
their inherent diversity in terms of the memory architecture,
the computation primitive, etc. (see Figure 1), mapping
DL workloads to such embedded systems is complex and
requires manual tuning for each. Current frameworks viz.
TensorFlow (1), PyTorch (2), MXNet (3), etc. rely on com-
putational graph intermediate representation to implement
optimizations although, according to the authors of TVM
(4), these graph-level optimizations are “too high-level to

1Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei
Hu, Luis Ceze, Carlos Guestrin and Arvind Krishnamurthy

handle hardware back-end-specific operator-level transfor-
mations” (4). Many a time these graph optimizations yield
new operators with no corresponding hardware primitive
within the predefined operator library which obliges us to
use unoptimized implementations.

Figure 1. Highlighting divergence in memory architecture and
compute primitives across various hardware systems.

Another vital point the authors generate is that DL accel-
erators like Tensor Processing Unit (TPU) employ static
scheduling (“leaner control”) rather than dynamic schedul-
ing (5), due to claims indicating power efficiency, which
offload most scheduling complexity to the compiler stack.
Consequently, the compiler stack is expected to produce
code such that pipeline dependencies (Structural, Data and
Control) are minimized to hide memory access latency.

TVM also addresses the challenge of searching for the most
optimized generated code amongst different versions of
the program with various optimizations, without engaging
in known approaches such as black box auto-tuning and
predefined cost function. Techniques such as loop tiling,
loop unrolling, caching, etc. construct a large search space
of valid programs for a given operator declaration.
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2. TVM’s contribution
• Data layout transformation: transforms the compu-

tational graph to leverage the hardware features such
as the memory architecture.

• Improved operator fusion: combines multiple oper-
ators into a single kernel to optimize memory access
latency by not storing intermediate results.

• Tensor expression language: which supports auto-
matic code generation and includes program transor-
mation primitives to generate different versions of the
program with various optimization for the same algo-
rithm (attained via. compute/schedule separation).

• Nested parallelism with cooperation: brings in “co-
operation” amongst threads to reuse shared memory in
GPUs and DL accelerators.

• Tensorization: introduces novel instructions which
exploit the underlying tensorized (not scalar or vec-
tor) hardware intrinsics present in TPUs and other DL
accelerators.

• Latency hiding: hides memory access latency which
is realised by appropriate scheduling by the compiler.

• Machine learning based optimization framework:
explores the large schedule space and return the op-
timized tensor operators for each layer of a defined
neural network.

3. The complete pipeline
Figure 2 displays all the components of TVM. One can note
from the figure that the input model is imported in TVM
as a computational graph accepted from many frameworks
from the likes of TensorFlow, MXNet, PyTorch, etc. TVM,
then, rewrites that computational graph to transform it into
an optimized version. This is the ‘high-level’ optimization
TVM talks about. The ‘low-level’ optimization, in the form
of operator-level optimization further generates the optimal
loop program where the operators are declared in TVM’s
tensor expression language . The low-level program is gen-
erated with the assistance provided by the code generator in
TVM. Finally, once the back-end is produced, TVM packs it
into a deployable module for the target hardware specified.

Tutorials on compiling models written in Python provide a
great reference on using TVM’s API to deploy models on a
rich basket of hardware they support (6) (7).

4. High-level Optimizations
High-level optimizations constitute optimizing on the com-
putational graph. A computational graph, commonly used

Figure 2. Lens through the TVM stack.

in DL frameworks such as TensorFlow (1), Theano (8),
MXNet (3) and so on, is network of connected nodes where
the nodes are represented as operations which could be as
trivial as add to as complex as 2D convolution. These oper-
ations operate on tensors whose dataflow is represented by
the directed edges of the graph. Ergo, computational graphs
used to represent a neural network are Directed Acyclic
Graphs (DAG).

“There are quite a few optimizations required by the VM
compiler. Each of them is implemented as a pass which is
managed by the Relay pass manager.” (9)

4.1. Operator Fusion

Operator fusion is simple but effective idea which trans-
forms the computational graph by modifying a cluster of
nodes of the graph to fabricate a “super-node” governed by
some axioms. Previously, the intermediate results had to be
stored in memory causing latencies - with operator fusion,
there are no intermediate results! The “super-operator” does
the merged operation on its operands without triggering a
cycle of memory accesses and stores of the same tensors.
With the reduced memory accesses, the execution time of
the program, represented as the transformed computational
graph, reduces significantly.

Graph operators generally used while representing neural
networks are classified in Table 1. The opaque operators
cannot be fused with any other operators. Rules for fusing
operators as adopted by TVM are:

• Multiple injective operators can be fused into another
injective operator to produce an fused injective opera-
tor.
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Table 1. Categories of graph operators.

GRAPH OPERATORS EXAMPLES

INJECTIVE ADD
REDUCTION SUM
COMPLEX-OUT-FUSABLE CONV2D
OPAQUE SORT

• A reduction operator can be fused with input injective
operator to yield a fused injective operator.

• Complex-out-fusable operator can be fused with
element-wise operators to its output.

The above rules are laid out in Figure 3 (10) along with
examples to deepen the understanding.

The source code for operator fusion explains (via. com-
ments) the fusing algorithm. The fusion algorithm
resorts to dominator trees from Graph Theory and applies
post-dominator analysis. From the comments in the source
code: “The general algorithm is as follows:

• Construct a DAG of dataflow graph for dominator
analysis

• Construct a post-dominator tree which gives immediate
post dominator of each node.

• Run fusion algorithm with the given post-dominator
information.

The immediate post-dominator of a node defined by the clos-
est node where all the future path goes into”. The above al-
gorithm traverses through each node in the DAG and checks
if it needs to be fused to its immediate post-dominator. To
comprehend dominator trees deeply and how they can be
used in compiler technologies, I recommend go through
the examples on its Wikipedia page - Dominator (Graph
Theory) - and this YouTube video on how dominator trees
are used for incremental updates in LLVM: (11).

4.2. Constant Folding

Constant folding is a popular compiler optimization which
involves evaluating constant expressions during compile-
time rather than their evaluation during run-time, as one
would normally expect. Pre-computing graph parts statically
saves execution costs. Constant expressions are expressions
involving only literals or variables whose values can be
computed at compile-time. Constant expressions such as:

y = 10 ∗ 2
x = y + 1

Figure 3. Rules for operator fusion.

can be “folded” statically.

Authors of TVM demonstrate how constant folding is imple-
mented as passes in Relay (12) (functional, statically-typed
IR) in their developer guide on ‘Adding a Compiler Pass to
Relay’ (13). “Passes perform the transformations and opti-
mizations that make up the compiler, they build the analysis
results that are used by these transformations, and they are,
above all, a structuring technique for compiler code” (14).
More on Relay’s pass infrastructure used by TVM can be
found in their developer guide (15). The source code on
constant folding exhibits how the ConstantFolder mutator
transforms the program by employing the ContantChecker
visitor which traverses nodes in the graph and checks for
constant nodes.

4.3. Static Memory Planning Pass

Implemented as a pass, it pre-allocates memory to hold each
intermediate tensor. The source code for MemoryPlan pass,
a derived class of ExprMutator discloses the details on how
allocations is executed.

4.4. Data Layout Transformations

Data layout expresses the form in which data should be struc-
tured in memory and how it should be accessed - row-major
order, column- major order, tiled or any other complicated
ones. For example, for Graphics Processing Units (GPUs),
depending on the number of SIMD processors, number of
parallel warps of threads, etc. the data can be laid in a man-
ner to optimize for both spatial and temporal locality and
simultaneous execution. Tensorflow’s default data layout for
convolution operator in NHWC (N - batch size, H - height
of a single image sample, W - width of a single image sam-
ple, C - number of channels in the image); the data is in
4-dimensions and is laid out in row-major order.

As a more concrete example, Figure 4 (10) displays how

https://github.com/apache/incubator-tvm/blob/master/src/relay/transforms/fuse_ops.cc
https://en.wikipedia.org/wiki/Dominator_(graph_theory)
https://en.wikipedia.org/wiki/Dominator_(graph_theory)
https://github.com/apache/incubator-tvm/blob/master/src/relay/transforms/fold_constant.cc
https://github.com/apache/incubator-tvm/blob/master/src/relay/transforms/fold_constant.cc
https://github.com/apache/incubator-tvm/blob/c7274fd3b0f693fc6214a450e13d5e99026337ae/python/tvm/relay/transform/memory_plan.py
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the underlying data layout can be transformed to exploit the
2x2 tensorized operations on its data. Notice how the blue
data lines in the top-right corner of the figure differ from the
ones in the bottom-right corner; half-word data at 0x20 is
now at 0x04 and so on.

Figure 4. 2x2 tensorized operation dictating a data layout transfor-
mation.

To optimize the data layout is to transform the computa-
tional graph such that the resultant graph uses its internal
data layouts deeply coupled with its target back-end. The
data layout should be specified for each operator, supported
by the framework and constrained by the memory hierar-
chy. Layout transformation also becomes critical in cases
where the frameworks uses a different layout than the TOPI-
supported layout. TOPI - TVM Operator Inventory (16) -
provides numpy-style generic operations and schedules with
higher abstractions than TVM.

TVM utilizes a Relay pass, ConvertLayout (17), to do the
layout handling. ConvertLayout changes the data layout
and the kernel (weights) layout of the whole graph rather
than doing so on each operator (node) in the graph. Convert-
Layout is called after the computation graph is parsed into
Relay’s representation from the framework’s by a parser
and before building with a relay.build call (17). The source
code for transform layout establishes the common infras-
tructure for transforming the layouts. Also, note that not
all operators of the computation graph rely on the inherent
data layout; which is why the authors of TVM categorize
the operators into 3 categories based on their sensitivity to
data layouts, as captured in Table 2.

The input data layouts of heavily-layout sensitive operators
are transformed while the rest of layout agnostic and lightly-
layout sensitive operators adapt to the layout, realised by
the AlterOpLayout pass in Relay, governed by the output
of these heavily-layout operators, to keep the whole compu-
tation graph consistent with the same layout, as mentioned
earlier. More on how the data layout is transformed can be
read from the documentation.

Figure 5 visually displays how the transformation takes
place. The TVM blog on ‘Automating Optimization of
Quantized Deep Learning Models on CUDA’ (18), which is
also the source of Figure 5, explains this example gracefully.

Table 2. Categories of operators based on their sensitivity to data
layout.

Sensitivity Remarks Operator exam-
ples

Layout
agnostic

Neither functionality nor
performance is affected ReLU, pow

Lightly-
layout
sensitive

Functionally affected but
not so much performance-
wise

padding, con-
catenate, reduce
operations (sum)

Highly-
layout
sensitive

Affected both functionally
and performance-wise

conv2d,
conv2d transpose

Figure 5. 2D convolution with data layout in NCHW4c and weight
layout in OIHW4o4i.

5. Generating Tensor Operations
The operator library imposes limitations on, for example,
the novel fused operators produced after operator fusion.
The number of possible fused kernels grows dramatically
based on the combinations of fused operators, data layout
techniques, hardware back-end, etc. As the authors point
out, a code generation approach that can generate various
possible implementations for a given model’s operators is
the fitting direction towards the solution.

“TVM produces efficient code for each operator by generat-
ing many valid implementations on each hardware back-end
and choosing an optimized implementation” (4). This is
only possible because of the approach TVM adopts from the
revolutionary Halide (19) - separating the algorithm from
the execution schedule. Decisions involving intermediate
storage and the order of computation, which are strictly
architecture-specific, constitute the schedule, under Halide’s
nomenclature. Due to this decoupling, experimenting with
the schedule to find the most optimal one is possible with-
out modifying the algorithm hence allowing one to express
many possible organizations of the same algorithm for a

https://github.com/apache/incubator-tvm/blob/master/src/relay/transforms/transform_layout.h
https://github.com/apache/incubator-tvm/blob/master/src/relay/transforms/transform_layout.h
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wide-array of hardware back-ends.

Authors of Halide highlight a simple example to compre-
hend the role of picking an optimal schedule for an algo-
rithm: “[...] computing a first stage on the entire image
before processing the second stage causes cache misses
when storing and loading the intermediate results; instead,
an optimized pipeline might transform the organization of
computation with tiling and fusion to compute both stages at
the granularity of smaller image tiles that fit in cache” (19).
The split representation introduced by Halide is captured in
Figure 6.

Figure 6. Highlighting separation of algorithm description of a 3x3
box filter from its schedule.

5.1. Tensor Expression and Schedule Space

The dataflow tensor expression language introduced by
TVM is for algorithm description, as shown in Figure 7.
The author claims it supports automatic code generation.
It’s based from languages like Halide (19), Darkroom (20)
and Tensor Algebra COmplier (TACO) (21).

Figure 7. Matrix multiplication: C = dot(A.T, B) in TVM’s tensor
expression language.

Some features of TVM’s tensor expression language:

• Supports common arithmetic and math operations.

• Commutative reduction operators (sum, min, max) to
schedule them across multiple threads. The official
tutorials (22) by TVM features the use of rfactor prim-
itive which divides the computation of reduction to be

parallelized amongst threads, stores the local reduction
result in a temporal array before doing a reduction over
the temp array.

• High-order scan operator to describe a symbolic loop.
Such operator are lucrative to model ‘Recurrent Neu-
ral Networks’ (RNNs) which relies on, as the name
suggests, recurrent computing. The tutorials (23) em-
phasis with a running example of a scan operator, cum-
sum, on how such operators have an init and update
placeholders and how they’re scheduled on TVM.

“Schedules are the specific rules that lower compute descrip-
tions down to back-end-optimized implementations” (10).
So, with schedule primitives that transform schedules, one
can surf the schedule space to provide different ways of
generating low-level, platform-dependant code. The authors
pictorially represent the various schedule primitives used in
TVM, in Figure 8, with the ‘schedule tree’ representation
derived by Halide. From the figure, we can visibly note how
the schedule transforms due to the schedule primitives.

Figure 8. Schedule primitives in TVM.

The tutorial on ‘Schedule Primitives in TVM’ (24) takes
us through the process of defining a schedule and reports
stages in scheduling for each operation. An exercise I tried
(which I highly recommend you do too) is to run through the
tutorial of each schedule primitive and juxtapose with the
schedule tree transformation in Figure 8 in order to absorb
the understanding of those primitives, visually. The novel
schedule primitives introduced by TVM is seen in detail in
the next sub-sections.

5.2. Nested Parallelism with Cooperation

GPUs, with their SIMT (Single Instruction Multiple Data
(SIMD) + Multi-threading) execution model, offer mas-
sive parallelism but they require us to create such parallel
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programming models which can make use of the underly-
ing architecture. So, since our separation of program and
schedule, our design of schedule transformations should be
impeccable to be able to capitalize on the target back-end.
‘Shared-nothing nested parallelism’, as the authors call, is
a fork-join type of parallelism. So, if a program can be
executed in a parallel manner, each of these parallel tasks
can be recursively subdivided into subtasks to exploit the
multi-level thread hierarchy on the target architecture (e.g.,
thread groups or warps in GPU). The name of the model
comes from the fact that a thread cannot access data of its
sibling withing the same parallel computation stage. Hence,
the only interaction between sibling threads is during the
‘join’ stage when their results is merged for the next stage
of schedule. The authors address this apparent limitation of
“no cooperating of threads withing the same parallel stage”
by introducing “cooperation” in their nested parallelism
model.

Although cooperation is well-known to GPU programming
languages like CUDA, OpenCL, etc., it never has been a
schedule primitive, according to the authors. “Memory
scopes”, the answer to cooperation, is introduced by the
authors to the schedule space, so that a stage can be marked
as shared. So, a group of threads are bound (with the bind
schedule primitive by TVM) with specified axes, that can
cooperatively fetch the data they all need and place it into a
shared memory space. The axis relation representation of
the new, improved schedule for a program of matrxi multipli-
cation, as shown in Figure 9 (10), shows how the split axis is
bound to ‘blockIdx‘ and ‘threadIdx’. The lowered represen-
tation of the resulting new schedule in Figure 10 highlight
how the compute stages - ‘AS’ and ‘BS’ - are shared. Also,
note in Figure 10, the need for compiler support to append
memory synchronization barriers to guarantee visibility of
shared data across the consumers.

Figure 9. Schedule tree for cooperative nested parallelism.

Figure 10. Lowered code of schedule with cooperative nested par-
allelism.

5.3. Tensorization

Just like vectorization is to be realised explicitly through
architecture-specific instructions for SIMD architectures,
an extension of that problem is tensorization for special-
ized DL accelerators. By leveraging hardware intrinsics,
one can achieve a significant performance boost for quan-
tized operators, example is the dp4a instruction in CUDA
which makes possible efficient computation of dot-product
between two 4-element 8-bit integer vectors (18). So, with
this, we can implement high-level operators such as 2D con-
volution (which are backed by dot-products) efficiently by
using these hardware intrinsics.

The authors separate the hardware interface from the sched-
ule for the schedule to scale to newer DL accelerators with
their own tensor instructions, in the future. They introduce
a tensor intrinsic “declaration mechanism” in the tensor ex-
pression language along with tensorize schedule primitive to
replace (lower) a unit of computation with the correspond-
ing tensor intrinsics. The schedule must use these primitives
to benefit from the acceleration.

As seen in top part of Figure 11, “the tensor expression
language describes both the users’ intended compute de-
scription, and the abstractions that the hardware exposes”
(10). The bottom part of Figure 11 shows how the schedule
utilizes the just defined hardware (tensor) instrinsic, in the
bottom lowered code. The complimentary Figure 12 shows
the corresponding transformation once the schedule equips
the tensorize schedule primitive.

The tutorial ‘Use Tensorize to Leverage Hardware Intrin-
sics’ (25) beautifully explains how matrix multiplication
can benefit on an accelerator that supports matrix-vector
multiplication (GEMV) as a hardware primitive by splitting
the matmul loops with a factor the hardware accelerator can
tensorize over. The tutorial demonstrates the defining of this
GEMV tensorization intrinsic.
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Figure 11. Using tensor expression language to describe hardware
intrinsics. The code below is the lowered code.

5.4. Explicit Memory Latency Hiding

“Latency hiding refers to the process of overlapping memory
operations with computation to maximize memory and com-
pute utilization” (4). Since memory accesses are usually
the most expensive in terms of latency, while an instruction
is out fetching data from memory, the processor can use
that idle time to compute other non-memory instructions in
parallel, ergo “hiding the latency” of memory instructions.
Many techniques can be utilized to hide latencies, as the au-
thors of TVM cover - CPUs achieve memory latency hiding
with simultaneous multithreading (SMT) (26) or hardware
prefetching (27) (28). GPUs, with their pool of SIMT units,
exercise context switching of many warps (29). Special-
ized DL accelerators such as TPU have a very different
approach of favoring “learner” control (as discussed previ-
ously) with a decoupled access-execute (DAE) architecture
(30). DAE provides two separate instruction streams for ac-
cess operands (memory instructions) and execute operands
(execution instructions) that communicate via queues. The
challenge of synchronizing the two streams is handed to
the programmer, i.e. the software. Figure 13 shows a DAE
hardware pipeline, in comparison with a monolithic one,
that hides memory access latencies and hence reduces the
total run-time latency. To resolve dependencies between
the memory instructions and execution instructions, syn-
chronization operations, which “sends a signal between
pipeline stages to indicate when a task is completed so that
the next dependent stage can start tp consume or overwrite
data” (10), must be augmented in the instruction stream
and as said previously, the compiler is handed this task!
Figure (30) shows how the compiler inserts such synchro-

Figure 12. Transformation of the schedule tree brought in by ten-
sorization.

nization instructions in the form of dependence token en-
queuing/dequeuing actions for a DAE hardware pipeline.

Figure 13. Example of DAE which hides most of the memory
access latency.

The authors express how programming with the low-level
synchronization primitives exposed by the hardware is a de-
manding job. In order to reduce the burden on the program-
mer, they introduce a virtual threading schedule primitive
in TVM that “lets the programmer specify a high-level data
parallel program that TVM automatically lowers to a low-
level explicit data dependence program” (10). The program-
mer writes the high-level data parallel program thinking he’s
programming for a hardware back-end with a support for
multithreading. TVM then lowers this program to a single
instruction stream with low-level explicit synchronization
to ensure correct no violation of the execution order within
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each virtual thread. Figure 14 hints at how TVM realises
virtual threading. One can see the algorithms represented
with a high-level multi-threaded program schedule. The
lowering process, which takes this high-level representation,
“maps the instructions of these virtual instruction streams
into the limited physical instruction streams” (10), depend-
ing on the hardware back-end. The lowering is bound to
rules which ensure its error-free in terms of preserving or-
dering of the instructions. The appendix section A describes
the necessary and sufficient condition for the correctness of
the lowering process (10).

6. Automating Optimizations
The previous section introduces the rich set of schedule prim-
itives used in TVM; now what’s left is to find the optimal
operator implementation using those primitives available in
TVM for each layer of a DL model. The task of choosing
ideal schedule-specific parameters such as the tiling size,
loop unrolling factors, etc. which forms is a massive search
space depending on the target back-end, needs the element
of automation. To address this challenge, the authors build
an automated schedule optimizer constituting of:

• a schedule explorer that proposes new parameters by
surfing through the search space

• a ML-based model that predicts the performance by
trying on those parameters for a specific hardware

6.1. ML-Based Cost Model

Ironic as it seems, the authors turn to ML to solve chal-
lenges for ML/DL. They engage in this statistical approach
to model the cost which predicts the rank of distinct configu-
rations based on the relative order of run-time costs. Unlike
the other automation methods viz. blackbox tuning and find-
ing the cost with a predefined cost model, ML-based cost
modelling doesn’t require running all configurations and
measuring their performance to identify a good one (like
blackbox auto-tuning) and it doesn’t expect one to care-
fully fabricate a cost model by considering factors such as:
memory access patterns, pipeline dependencies, threading
patterns and so on, for each hardware target (like predefined
cost model methodology). Such observations on differences
amongst the automation methods are summarized in Table
3.

The gradient tree boosting model (based on XGBoost (31)),
equipped by the authors, is trained using run-time measure-
ment data collected during exploration. During the inference
stage, it makes predictions based on features such as mem-
ory access count, reuse ratio of each memory buffer at each
loop level and one-hot encodings to recognize loop annota-
tions such as “vectorize”, “unroll” and “parallel”, extracted

Table 3. Comparison of automation methods.

MODEL
CATEGORY

DATA
COST

MODEL
BIAS

NEED
HARD-
WARE
INFO

LEARN
FROM
HIS-
TORY

BLACKBOX
AUTO-
TUNING

HIGH NONE NO NO

PREDEFINED
COST
MODEL

NONE HIGH YES NO

ML-BASED
COST
MODEL

LOW LOW NO YES

from the loop program (see Figure 15). Apart from utilizing
the loop program to a gradient-based ML model, the authors
also try an another approach of feeding the Abstract Syntax
Tree (AST) of the loop program to TreeRNN (32). This DL
appraoch eliminates manual feature engineering, as seen in
Figure 15, however the authors resort to the former method
due to lesser inference time and lesser training time. The
inference time, as the authors point out, is pivotal to be
under a threshold because the schedule explorer queries the
ML model frequently and this overhead should be smaller
than the time it takes to measure performance on real hard-
ware, else we would not gain anything from our efforts to go
along with ML-based cost modelling rather than blackbox
auto-tuning.

6.2. Schedule Exploration

During the initial runs, when no prior training data exists,
the schedule explorer picks random configurations for the
ML model to predict on. The ML model, after a few iter-
ations of training in an online manner, is now capable to
deliver its predictions to the explorer which iteratively se-
lects another batch of potential candidates (configurations)
to run the measurements on. The authors employ a parallel
simulated annealing algorithm (33) to explore the schedule
space instead of enumerating and running through every
configuration through the ML model. “The explorer starts
with random configurations, and, at each step, randomly
walks to a nearby configuration. This transition is success-
ful if cost decreases as predicted by the cost model. It is
likely to fail (reject) if the target configuration has a higher
cost. The random walk tends to converge on configurations
that have lower costs as predicted by the cost model” (4).

Figure 6.2 shows the complete pipeline.
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Figure 14. Virtual threading.

Figure 15. Example workflow of XGBoost and TreeRNN models.

7. Evaluation
The evaluation methodology and their results are beyond the
scope of this review. Please refer to the original paper (4)
where the authors explore components of TVM individually
to capture their performance gain over multiple platforms
(server-class GPU, embedded GPU, embedded CPU and
DL accelerator) in comparison to the existing frameworks
(MXNet and TensorFlow).

8. Conclusion
The raison d’être of this review document was to bring in key
elements of TVM together and absorb the technical concepts
used to be able to reason the incredible success of TVM,
an end-to-end compilation stack, on tackling optimization
challenges for deep learning across a diverse set of hardware
back-ends. I hope this work encourages additional such
studies to get a deeper understanding of how compilation

Figure 16. Automated optimization framework’s workflow.

stacks, such as TVM, tap out the best from their target back-
end hardware and how they evolve the domain of compiler
design.

9. Future Work
• Design tutorials about topics which are not already

covered.

• Participate in the community discussions.

• Improve TVM’s documentation.

• Contribute to Dive into Deep Learning Compiler
project.

• Contribute to TVM.

(The above non-exhaustive list is intended to provide direc-
tion to ones familiar with the basics of TVM, as covered in
this document. It does not entail any future work on this
document itself.)

https://tvm.d2l.ai/index.html
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A. Correctness of Virtual Threading
Lowering

Theorem 1. Let < be the partial order of the instructions
after lowering, S = {(xi, yi)} be set of all pairs of
push-pop instructions before lowering. Every push message
sent by the sender gets received by the corresponding pop
instruction (lowering is correct), if and only if

(x′ > x) =⇒ (y′ > y)

Similarly, (x′ < x) =⇒ (y′ < y)

∀(x, y), (x′, y′) ∈ S

In other words, the relative order of receiver (y, y′) of the
synchronization message need to be the same as its sender
(x, x′) for each send–receive pair.

Proof. Proof by contradiction. Let a be the first sender in
a physical queue to send its message to wrong receiver d.
Then ∃(a, b), (c, d) ∈ S.

• a < c since a is the first sender who sent the wrong
message.

• b < d because of the theorem condition.

• The above statement means b pops a message from the
queue before d from some sender h (it ideally should
have received from sender a), and h < a due to the
FIFO property of message queue.

• This contradicts the fact that a is the first sender in
the queue to send to the wrong receiver (h is the first
wrong receiver!).
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